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Abstract. In this study, the influence of disaggregated rain-
fall products with different degrees of spatial consistence
on rainfall–runoff modeling results is analyzed for three
mesoscale catchments in Lower Saxony, Germany. For the
disaggregation of daily rainfall time series into hourly val-
ues, a multiplicative random cascade model is applied. The
disaggregation is applied on a station by station basis with-
out consideration of surrounding stations; hence subsequent
steps are then required to implement spatial consistence. Spa-
tial consistence is represented here by three bivariate spa-
tial rainfall characteristics that complement each other. A re-
sampling algorithm and a parallelization approach are eval-
uated against the disaggregated time series without any sub-
sequent steps. With respect to rainfall, clear differences be-
tween these three approaches can be identified regarding bi-
variate spatial rainfall characteristics, areal rainfall intensi-
ties and extreme values. The resampled time series lead to
the best agreement with the observed ones. Using these dif-
ferent rainfall products as input to hydrological modeling, we
hypothesize that derived runoff statistics – with emphasis on
seasonal extreme values – are subject to similar differences
as well. However, an impact on the extreme values’ statis-
tics of the hydrological simulations forced by different rain-
fall approaches cannot be detected. Several modifications of
the study design using rainfall–runoff models with and with-
out parameter calibration or using different rain gauge den-
sities lead to similar results in runoff statistics. Only if the

spatially highly resolved rainfall–runoff WaSiM model is ap-
plied instead of the semi-distributed HBV-IWW model can
slight differences regarding the seasonal peak flows be iden-
tified. Hence, the hypothesis formulated before is rejected in
this case study. These findings suggest that (i) simple model
structures might compensate for deficiencies in spatial rep-
resentativeness through parameterization and (ii) highly re-
solved hydrological models benefit from improved spatial
modeling of rainfall.

1 Introduction

Flood quantiles are important information for the creation
of flood hazard maps, the construction of riverfront build-
ings and landscape development plans, for example. For un-
gauged catchments and catchments with short discharge ob-
servation periods, rainfall–runoff modeling is a possibility to
obtain long, simulated discharge time series which can then
be used for derived flood frequency analysis.

The most important data input for rainfall–runoff mod-
eling are rainfall time series (Beven, 2001). Melsen et
al. (2016) gave an overview of typical processes for different
catchment sizes and corresponding temporal resolutions. For
catchments with areas of a few hundred square kilometers,
time series with hourly resolutions are required for the sim-
ulation of instantaneous flood peaks. In most of these cases,

Published by Copernicus Publications on behalf of the European Geosciences Union.



5260 H. Müller-Thomy et al.: Rainfall disaggregation for hydrological modeling

observed rainfall time series of that kind are (i) too short or
(ii) the network density is too low. Both are issues because
(i) limits the length of the simulation period and hence the
derivable flood frequencies and (ii) affects the representation
of spatial rainfall patterns (Krajewski et al., 1991; Ogden and
Julien, 1993; Obled et al., 1994, and Nicotina et al., 2008)
and hence the areal rainfall used as input for the rainfall–
runoff simulations.

Usually, time series of daily stations have much longer ob-
servation periods and a higher network density. Daily time
series can be disaggregated to hourly time series by using
information from observed, hourly time series. One possible
method for the disaggregation of rainfall is the multiplicative
random cascade model (e.g., Olsson, 1998), which was orig-
inally introduced within the field of turbulence theory (Man-
delbrot, 1974). The use of observed daily time series as in-
put is a strong advantage of the cascade model, since start-
ing with “true” rainfall amounts and intermittency facilitates
their conservation to finer temporal resolutions, while other
rainfall generators (e.g., Poisson cluster models; Rodriguez-
Iturbe et al., 1987; Onof et al., 2000) try to generate time
series with a certain temporal resolution and target statistics
without any temporal reference to observations.

With the microcanonical cascade model, the rainfall
amount of a coarse time step (e.g., a day) is conserved exactly
through the disaggregation process, so that an aggregation of
the disaggregated time series would result exactly in the orig-
inal observed time series. Starting from a daily resolution,
an hourly temporal resolution is achieved, which is a conve-
nient input resolution for many rainfall–runoff models. How-
ever, this disaggregation method is a univariate process, car-
ried out for single time series only which are independent of
the time series of surrounding stations. Through the system-
atically random distribution of the rainfall amount within a
day, unrealistic patterns of rainfall are generated and the spa-
tial consistence of rainfall is missing. If an unrealistic spatial
distribution of rainfall is used within a rainfall–runoff simula-
tion, it can be assumed that this affects the simulated runoff.
However, a realistic spatial representation of rainfall is essen-
tial if the time series serve as input for rainfall–runoff mod-
eling (e.g., Gires et al., 2015; Paschalis et al., 2014; Ochoa-
Rodriguez et al., 2015; Peleg et al., 2017).

Müller and Haberlandt (2015) have introduced a resam-
pling scheme as a subsequent step after the disaggregation
process, which can be used for the implementation of spatial
consistence within disaggregated time series. Spatial consis-
tence is hereby defined by three bivariate rainfall character-
istics: the probability of occurrence, Pearson’s coefficient of
correlation and the continuity ratio (Wilks, 1998). The im-
plementation of spatial consistence for hourly time series was
proven by the abovementioned bivariate characteristics in ad-
dition to areal rainfall intensities resulting from the disaggre-
gated time series. Without resampling, areal rainfall intensi-
ties were underestimated. The resampling algorithm was ad-
ditionally tested for time series of 5 min resolution by Müller

and Haberlandt (2018). Bivariate rainfall characteristics as
well as the simulated runoff from an artificial sewage sys-
tem were positively validated against observed rainfall time
series and its resulting simulated runoff.

Haberlandt and Radtke (2014) overcame the lack of spa-
tial consistence using a parallelization approach, which leads
to an overestimation of simulated floods, but is preferred in
comparison to a possible underestimation. However, Ding
et al. (2016) also used disaggregated time series for their
rainfall–runoff analyses with a focus on instantaneous peak
flows, but without any subsequent changes to the disaggre-
gated time series. Neither a systematic over- or underestima-
tion of simulated discharge and flood peaks can be found in
both investigations.

It can be questioned why the simulation results from both
studies, both based upon unrealistic spatial rainfall behavior,
lead to an acceptable representation of observed discharge
characteristics. The hypothesis of this study is that rainfall
products with different degrees of spatial consistence will
result in different areal rainfall intensities and hence influ-
ence runoff statistics derived from simulated runoff time se-
ries. Therefore, three different rainfall products are used as
input for rainfall–runoff modeling: disaggregated time se-
ries with (Müller and Haberlandt, 2015) and without (Ding
et al., 2016) the implementation of spatial consistence, and
thirdly, time series with an “overestimated spatial consis-
tence” by parallelization (Haberlandt and Radtke, 2014).
A systematic comparison is carried out including rainfall–
runoff simulations with and without calibration, differing sta-
tion densities and different rainfall–runoff models.

In general, calibration and validation of rainfall–runoff
model parameters are carried out through a quantitative com-
parison of simulated and observed time series. This strategy
is not applicable using disaggregated rainfall time series as
input, since the daily rainfall amount is distributed randomly
in time during a day. Hence, the temporal connection be-
tween rainfall and runoff is missing. An alternative strategy
is the calibration on runoff statistics and has been applied
before by others, for example, Yu and Yang (2000), West-
erberg et al. (2011), Haberlandt and Radtke (2014), Wall-
ner and Haberlandt (2015) and Ding et al. (2016). Runoff
statistics are time-independent, but contain useful informa-
tion about the hydrograph and hence about the hydrologi-
cal regime and its characteristics. It is assumed that, by a si-
multaneous consideration of different complimentary runoff
statistics, the runoff behavior can be represented sufficiently.
Possible runoff statistics are runoff extremes for different
seasons of a year (to take into account, e.g., summer and win-
ter floods with their different geneses and resulting runoff be-
havior), flow duration curves (to describe the overall behav-
ior) and average monthly values (to describe the interannual
variability).

The paper is organized as follows: after a brief description
of the study area and the data in Sect. 2, the rainfall gen-
eration including the implementation of spatial consistence
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Figure 1. Location of all three catchments in the Aller–Leine river
basin and its location in Germany.

and the applied rainfall–runoff models including the calibra-
tion technique are explained in Sect. 3. Section 4 includes
the results for both the rainfall generation and rainfall–runoff
modeling. A summary of the rainfall–runoff model results is
provided in Sect. 5 and general conclusions and a brief out-
look are provided in Sect. 6.

2 Data and study area

2.1 Catchments

The investigation is carried out for three catchments in
the Aller–Leine river basin, namely Reckershausen, Pionier-
brücke and Tetendorf (see Fig. 1). The river basin is situ-
ated in Lower Saxony, Northern Germany, and has been in-
vestigated regarding its runoff extreme values before (e.g.,
Haberlandt and Radtke, 2014; Ding et al., 2016; Fangmann
and Haberlandt, 2018). Based on the Köppen–Geiger climate
classification, the river basin can be divided into a temperate
oceanic climate in the north and a temperate continental cli-
mate in the south (Peel et al., 2007). For Reckershausen an
additional investigation regarding rain gauge network den-
sity is carried out. All hourly and daily stations for Recker-
shausen are shown in Fig. 2.

Figure 2. Reckershausen catchment including sets of three, five and
eight daily stations used for network density analysis.

The catchments differ concerning area and elevation as
well as land use and soil conditions. A brief description can
be found in Table 1. The soil information is extracted from
the soil map BÜK1000 of the Federal Republic of Germany
with a scale of 1 : 1000000 (Hartwich et al., 1998). Infor-
mation regarding the land use is extracted from the CORINE
database (Federal Environment Agency, 2009). The time of
concentration has been estimated as per Kirpich (1940).

2.2 Climate data

For the rainfall disaggregation, time series of hourly and
daily stations are required. Time series of the hourly stations
are used for the parameter estimation of the cascade model
(described in Sect. 3.1a), which is in turn used for the disag-
gregation of the time series of the daily stations. An overview
of rain gauges used in this study is given in Fig. 1, while their
measuring periods are given in Table 2. For the daily stations,
the chosen period is the longest available period with data for
all stations in a catchment. From Table 2 it can be seen that
time series have a longer duration for daily stations in com-
parison to those for hourly stations for all catchments (up
to 2.7 times for Pionierbrücke). Additionally, the number of
daily stations is higher.

For the rainfall–runoff model HBV (see Sect. 3.2), time
series of precipitation, temperature and potential evaporation
are needed. The following description of data processing of
temperature and potential evaporation is based on Wallner
et al. (2013) and was carried out for the whole Aller–Leine
basin. The temperature time series were derived through an
interpolation using external drift kriging of 38 hourly stations
with hourly resolution, whereby the additional information is
elevation.
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Table 1. Brief description of the investigated catchments with percentages of dominant soil type and land use.

Catchment River Area Subcatchments Time of concentration Dominant soil type Dominant land use
(km2) (h)

Pionierbrücke Sieber 44 2 1.8 Spodic Cambisols (77 %) Coniferous forest (81 %)
Tetendorf Böhme 110 3 7.2 Haplic Podzols/Dystric Nonirrigated arable land (39 %)

Regosols (40 %)
Reckershausen Leine 321 10 7.4 Dystric Cambisols (37 %) Nonirrigated arable land (59 %)

Table 2. Rain gauges and time series lengths used for each catch-
ment.

Catchment Type Rain gauges Start End

Pionierbrücke
Daily 3 1950 2004
Hourly 1 1993 2013

Tetendorf
Daily 3 1984 2006
Hourly 1 1993 2013

Reckershausen
Daily 8 1972 2006
Hourly 2 1993 2013

The calculation of the potential evaporation is carried out
using the Turc–Wendling method on a daily basis (DVWK,
1996). The required sunshine duration per day was derived
through ordinary kriging using 29 stations. To achieve an
hourly resolution, daily values have been divided by 24, since
the inter-daily distribution of potential evaporation has been
shown not to be that sensitive as model input. Different land
use types have been taken into account by using an average
land use parameter (DVWK, 2002) similar to the crop co-
efficient. All input data were interpolated and subsequently
aggregated to subcatchment scale.

For the WaSiM model, which is only applied for the Pio-
nierbrücke catchment, climate time series are needed as point
or gridded information on an hourly basis. From the Braun-
lage climate station, time series of temperature, relative air
humidity and wind speed are available with an hourly resolu-
tion. Global radiation was only available on a daily basis, but
has been disaggregated to hourly values using an approach
as in Förster et al. (2016).

2.3 Runoff data

The available discharge data of the three catchments are
listed in Table 3. While observed hourly time series have
only been available since 2000 (Pionierbrücke) and 2004
(Tetendorf and Reckershausen), observed extreme values ex-
ist for much longer periods. Daily discharge time series exist
for at least as long as the period of the hourly extreme values
on a monthly basis.

For the calibration, a special focus is given to the extreme
values of the summer (1 May–31 October) and winter period
(1 November–30 April). Therefore, the maximum observed
value of each half year was extracted from both data sources,

Table 3. Available periods of runoff data types.

Catchment Hourly Daily Monthly
discharge discharge extreme
time series time series values

Pionierbrücke 2000–2013 1929–2006 1952–2005
Tetendorf 2004–2013 1986–2000 1986–2000
Reckershausen 2004–2009 1964–2006 1974–2005

observed hourly time series and monthly extreme values, to
generate periods as long as possible.

3 Methods

The method section consists of two subsections. In Sect. 3.1,
the multiplicative cascade model for the disaggregation of
rainfall time series is explained. Additionally, two methods
for the implementation of spatial consistence in the disaggre-
gated time series are presented. The descriptions of the two
rainfall–runoff models HBV and WaSiM and the calibration
procedure for HBV can be found in Sect. 3.2.

3.1 Rainfall generation

(a) Rainfall disaggregation

The multiplicative random cascade model (Müller and
Haberlandt, 2015) is applied for the disaggregation of time
series of the daily stations. A general scheme of this model is
shown in Fig. 3. One coarse time step is divided into b finer
time steps of equal length. The branching number b deter-
mines the number of finer time steps and is in the first disag-
gregation time step b = 3 and in all following disaggregation
steps down to 1 h resolution b = 2. The cascade model is mi-
crocanonical, so the rainfall amount of each time step is con-
served exactly. A re-aggregation of the disaggregated time
series yields the observed time series used for the disaggrega-
tion. Since the focus of this study is not on the disaggregation
itself, the interested reader is referred to Müller and Haber-
landt (2015) for a more detailed explanation. However, the
main results are a slight underestimation of dry spell duration
(relative error of −6 %), percentage of dry intervals (−3 %),
wet spell duration (−12 %) and amount (−9 %), while aver-
age intensity is slightly overestimated (4 %). While the au-
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Figure 3. General disaggregation scheme of the applied multi-
plicative cascade model (values inside the boxes represent rainfall
amount, and a blue or white box color indicates wet or dry time
steps, respectively).

tocorrelation function also shows underestimations, the ex-
treme values are represented well.

(b) Bivariate characteristics

For the definition of spatial consistence applied in this study,
the bivariate rainfall characteristics follow the ones used by
Haberlandt et al. (2008) and are briefly described in the fol-
lowing.

The probability of occurrence Pk,l describes the probabil-
ity of rainfall occurrence at the same time at two stations k
and l:

Pk, l (zk > 0 |zl > 0)≈
n11

n
, (1)

where n is the total number of non-missing observation hours
at both stations, zi is the rainfall intensity and the number
of simultaneous rainfall occurrence at both stations is repre-
sented by n11.

Pearson’s coefficient of correlation ρ describes the rela-
tionship between simultaneously occurring rainfall at two
stations k and l as a measure of the linear relation between
both rainfall time series (Eq. 2). Breinl et al. (2014) used this
coefficient before for multisite rainfall generation:

ρk, l =
cov(zk, zl)

√
var(zk) · var(zl)

,zk > 0,zl > 0. (2)

Müller and Haberlandt (2015) found an intensity dependency
for Pearson’s coefficient of correlation and distinguished
between ρ(k ≤ 4 mm) and ρ(k > 4mm), which is adopted
here.

The continuity ratio Ck, l compares the expected rainfall
amount at one station for times with and without rain at the
neighboring station (E is the expectation operator):

Ck, l =
E(zk |zk > 0,zl = 0)
E (zk |zk > 0,zl > 0)

. (3)

Table 4. Short characterization of the three rainfall products.

Starting point Subsequent step Rainfall occurrence Designation
at different stations

Disaggregated None Random V1

time Resampling Intersecting V2

series Parallelization Simultaneous V3

These characteristics are distance-dependent and prescribed
values can be estimated as functions of the separation dis-
tance between two stations from observed data (see regres-
sion lines in Fig. 4 for each characteristic).

(c) Implementation of spatial consistence

As mentioned before, the disaggregation of single time series
is a point process with no surrounding stations taken into ac-
count. Input rainfall products for the rainfall–runoff models
consisting of just the disaggregated time series without sub-
sequent steps to implement spatial consistence are referred to
as V1 (no implementation of spatial consistence). Two meth-
ods for the implementation of spatial consistence, and result-
ing in the rainfall products V2 and V3, are applied in this
study.

The first method, resulting in V2, is based on simulated
annealing (Aarts and Korst, 1965; Kirkpatrick et al., 1983), a
nonlinear optimization method from the group of resampling
algorithms. The aim of simulated annealing is to modify the
disaggregated time series and in doing so minimize an objec-
tive function including the deviations between the observed
bivariate rainfall characteristics and those from the disaggre-
gated time series. Relative diurnal cycles are swapped with-
out changing the structure of the time series or the absolute
daily totals of rainfall amounts. The interested reader is re-
ferred to Müller and Haberlandt (2015) for further details.

The second method, resulting in rainfall product V3, is a
more pragmatic solution. It was introduced by Haberlandt
and Radtke (2014) and is also based on the time series of V1
that is already disaggregated. For each day, the station with
the highest rainfall amount is identified. The relative diurnal
cycle of this station is transferred to all other stations for this
day. This parallelization is carried out for all days of the dis-
aggregated time series. The varying diurnal distributions of
rainfall at each station without spatial patterns, leading to an
underestimation of spatial consistence, are transformed in-
stead to a simultaneous occurrence of rainfall at all stations
with an overestimation of spatial consistence.

Both methods are compared against using the disaggre-
gated time series without any subsequent steps. For analyses
and discussion of the impacts of these methods, the designa-
tions listed in the summarizing Table 4 are used.
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Figure 4. Bivariate spatial rainfall characteristics of V1, V2 and V3 in comparison to observations for the Pionierbrücke catchment (for one
realization, black circles represent observations – for details the reader is referred to Müller and Haberlandt, 2015).

3.2 Hydrological models

For analyzing the impact of rainfall products with different
spatial consistencies, two models, HBV-IWW (Wallner et
al., 2013) and WaSiM (Schulla, 1997, 2015), are used. All
simulations are carried out continuously. This enables the
derivation of flood frequency analyses and avoids uncertain-
ties from unknown initial conditions resulting from event-
based modeling (Pathiraja et al., 2012). Additionally, an ini-
tial phase of 1 year is used as a spin-up period to achieve
plausible initial conditions for all storages.

(a) HBV-IWW including calibration procedure

The HBV-IWW model is based on the HBV model that was
originally developed at the Swedish Meteorological and Hy-
drological Institute (SMHI) in the early 1970s (Bergström,
1976) and was modified by Wallner et al. (2013). HBV-IWW,
denoted HBV for simplification, is a conceptual model,
whereby runoff generation and runoff transformation are rep-
resented by simple relationships between storage and effec-
tive precipitation, or runoff (see flowchart of the model in
Fig. S1 in the Supplement). For the spatial discretization of
the study areas, subcatchments (see Fig. 2) with an approx.
area of 20 km2 are applied. It could be questioned whether
a rainfall–runoff model with subcatchments is useful for the
validation of the spatial consistence of rainfall. A daily sta-
tion covers an area of 65 km2 on average in Germany (Müller,
2016). This spatial resolution is not increased by the cas-
cade model in this study, since only a temporal disaggre-
gation is applied. Also, no additional information is gained
by a model with higher spatial resolution. So the only dis-

advantage could be a sort of numerical diffusion due to the
spatial resolution. However, since subcatchments of this size
are used throughout a number of studies, the HBV with this
spatial resolution represents the state of the art and is applied
for the current study.

For the estimation of the areal rainfall of each subcatch-
ment, a two-step approach was chosen. First, rainfall is in-
terpolated with a nearest neighbor approach on a raster basis
with cell widths of 1 km. In the second step, areal rainfall
for each subcatchment is calculated through the arithmetic
mean of all raster cells within the subcatchment. If the areal
rainfall of a subcatchment is dominated by one station, it
could be questioned whether areal rainfall intensities should
be reduced (by, e.g., areal reduction factors; Sivapalan and
Blöschl, 1998; Veneziano and Langousis; 2005; Wright et
al., 2013) to avoid an overestimation (e.g., Peleg et al., 2018).
Since underestimations also occur in the continuous simula-
tion if this station was not in the center of the storm, no areal
reduction was carried out.

Snow accumulation and snowmelt are based on a threshold
temperature and the degree day method. After snow storage,
all precipitation and snowmelt enters the soil storage where
actual evaporation is considered. Depending on the state of
the soil storage, water is released to the upper groundwa-
ter layer from where surface runoff and interflow can oc-
cur. Both are controlled by a storage coefficient. Water from
the upper groundwater layer can also percolate to the lower
groundwater layer. The outflow from the latter represents the
baseflow component. Surface runoff, interflow and baseflow
are finally summarized and transformed via a triangular unit
hydrograph. River routing is carried out via the Muskingum
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Table 5. Calibration and validation period for all catchments.

Gauge Calibration period Validation period

Start End Start End

Pionierbrücke 1 Nov 1952 31 Oct 1977 1 Nov 1977 31 Oct 2003
Tetendorf 1 Nov 1986 31 Oct 1993 1 Nov 1993 31 Oct 2000
Reckershausen 1 Nov 1974 31 Oct 1990 1 Nov 1990 31 Oct 2006

method. Further details about the model parameters can be
found in Wallner et al. (2013) and in Table S2 in the Supple-
ment.

For the calibration, the following runoff statistics are used:
quantiles of the distribution functions fitted to the extreme
values of (i) summer (Extr-Su, May to October) and (ii) win-
ter (Extr-Wi, November to April), (iii) quantiles of the flow
duration curve (FDC) and (iv) monthly averages (Q-mon).
The calibration is carried out for each rainfall product sepa-
rately, but for all 10 realizations at the same time (resulting in
1 parameter set for 10 realizations) The calibration procedure
is also illustrated in Fig. S1.

For Extr-Su and Extr-Wi, a two-parametric Gumbel distri-
bution is fitted to the annual series of extreme values. L mo-
ments are used for parameter estimation to reduce the sensi-
tivity against outliers (Hosking and Wallis, 1997). Although
extreme values only occur in a few time steps, their repro-
duction in the discharge time series is the main aim of the
simulation on an hourly basis. However, since the extreme
values only represent a small fraction of the discharge time
series, FDC and Q-mon are also used to represent the more
frequent discharge values. Q-mon accounts for the tempo-
ral dependency on the interannual variation of the discharge.
The analyses of FDC and Q-mon allow no direct validation
of the rainfall products, but enable an overall plausible sim-
ulation of rainfall–runoff processes. Hence, FDC and Q-mon
are calculated from averaged daily discharge values in order
to reduce computation time. For the goodness-of-fit analyses
of simulated (Sim) and observed (Obs) statistics, the Nash–
Sutcliffe-efficiency, NSE (Nash and Sutcliffe, 1970), is used.
A perfect fit would result in NSE= 1, while assuming the av-
erage of the observed data for all time steps would result in
NSE= 0. The equation for the NSE is given in Eq. (4) and
the corresponding quantiles for Extr-Su, Extr-Wi and FDC
and months for the Q-mon, respectively, are given in Eq. (5).

NSE= 1−
∑n
t=1(QObs (t)−QSim(t))

2∑n
t=1
(
QObs (t)−QObs

)2 (4)

t =



{0.05, 0.25, 0.5, 0.75, 0.95, 0.975}
for FDC
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
for Q-mon
{0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99}
for Extr-Su and Extr-Wi

(5)

The goodness-of-fit values of all runoff statistics are summa-
rized in the objective function Ostat, which should be mini-
mized during the calibration:

Ostat = 1− (0.275 ·NSEExtr-Su+ 0.275 ·NSEExtr-Wi

+0.2 ·NSEFDC+ 0.25 ·NSEQ-mon
)
. (6)

For the optimization, simulated annealing is used. The pa-
rameters modified during the optimization with the corre-
sponding ranges are given in Table S2. The periods for cal-
ibration and validation are listed in Table 5 for each catch-
ment.

(b) WaSiM

WaSiM (Schulla, 1997, 2015) is a physically based and
distributed hydrological model which has been designed to
study climate change and land use change impacts on the wa-
ter balance and floods in mesoscale catchments (e.g., Niehoff
et al., 2002; Bormann and Elfert, 2010). WaSiM was for-
merly known as WaSiM-ETH, but has since been renamed
(Schulla, 2015), and hence the new abbreviation is used
throughout the paper. WaSiM is flexible regarding the res-
olution of spatial input data. In general, elevation, land use
and soil data need to be prepared as gridded raster datasets.
The spatial resolution of WaSiM applications covers several
scales ranging from tens of meters to a few kilometers. For
this study a spatial resolution of 150m× 150m was chosen.

For the areal rainfall estimation, a combined inverse
distance weighting and elevation-dependent regression ap-
proach is applied. This approach does not only account for
a horizontal interpolation but also addresses the typically
observed increase in precipitation with increasing elevation,
which proves helpful given that the catchment spans an alti-
tudinal range of several hundred meters.

A set of alternative hydrological process representations
for each of the following sub-models is included in the model
in order to cover different user needs and meteorological data
requirements: (i) evapotranspiration, (ii) snow, (iii) intercep-
tion and (iv) soil water. This list is not exhaustive since other
processes can also be addressed using the model. Here, only
the processes utilized in this study are described. Potential
evapotranspiration is computed using the Penman–Monteith
approach (e.g., Monteith, 1965), taking look-up tables of pa-
rameters defined for different land use classes into account.
Seasonal snow cover dynamics is simulated using a temper-
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ature threshold for phase partitioning and a temperature in-
dex model for snowmelt calculations. A bucket approach is
applied to consider interception of rainwater. The soil wa-
ter dynamics including actual evapotranspiration, infiltration,
lateral outflow (interflow) and percolation is simulated in a
numerical scheme which is based on the Richards equation.
The lowermost nodes in each grid cell, which are subject to
saturation, represent the groundwater storage in the model.
A linear storage approach is applied here to simulate the out-
flow from the groundwater.

Since WaSiM is more complex than HBV with respect to
computational needs, a different strategy for model calibra-
tion was chosen. As the number of both adjustable param-
eters and iterations is limited due to limited computational
resources, a lexicographical approach was set up for model
calibration (Gelleszun et al., 2017). In this way, the optimiza-
tion of parameters is divided into subsequent steps that are
associated with different processes. In a first step, the param-
eters of the soil water balance and runoff generation (i.e.,
recession of hydraulic conductivity along the soil profile and
the flow density) have been calibrated through maximizing
NSE. Then, the baseflow recession is improved through min-
imizing the root mean square error of the lowermost part of
the flow duration curve (two parameters). Both calibration
steps have been performed using hourly meteorological time
series and observed discharge time series from the period
2009–2012. As highly resolved meteorological observations
are only available from 2000 onwards, an additional calibra-
tion step has been carried out using disaggregated rainfall
time series in order to better match the long-term water bal-
ance characteristics through slightly modifying canopy resis-
tance parameters of the evapotranspiration model. Without
these pre-calibration steps an underestimation of the mean
discharge and hence the water balance was identified. An in-
correct representation of the water balance introduces other
uncertainty sources, which hence superpose the effects of
the different versions of spatial rainfall. However, this pre-
calibration was only focused on the water balance itself and
not on the objectives used in Eq. (6).

4 Results and discussion

For the discussion of the results, the section is divided into
two parts. The first part deals with the interpretation of the
rainfall spatial variability, while the influence on simulated
discharges is discussed in the second part.

4.1 Rainfall

For the disaggregation of daily rainfall time series to hourly
values, the microcanonical cascade model of Müller and
Haberlandt (2015) is used. This model was previously val-
idated in the aforementioned study for the Aller–Leine river
basin, which is also considered in this study. Since the fo-

cus of this study is the spatial variability of the generated
rainfall, the interested reader is referred to their investigation
for a detailed analysis of point results. In Fig. 4 the bivari-
ate characteristics are shown for V1, V2 and V3 in compar-
ison with the observations for Pionierbrücke (results for the
other two catchments are in Fig. S3 and S4). For the V1 case
(the disaggregated time series without any subsequent steps),
the probability of occurrence and the correlation coefficients
are underestimated, whereas the continuity ratio is overesti-
mated.

For the V2 case, the probability of occurrence and the cor-
relation coefficients could be improved. While values for the
probability of occurrence and correlation coefficient for rain-
fall intensities> 4 mm are similar to observations, a slight
underestimation can be identified for correlation coefficients
for rainfall intensities ≤ 4 mm for some station pairs. For the
continuity ratio, V2 results vary. This is due to the definition
of the criterion, taking station k with respect to station l into
account, but not vice versa. This definition leads to different
values for the same station pair because different time steps
are taken into account. Therefore, for Ck, l an improvement
can be identified during simultaneous worsening of Cl, k .

It should be noted that the resampling algorithm has not
been validated in the context of distances smaller than 20 km
for hourly time steps. Although the spatial rainfall charac-
teristics are underestimated after the disaggregation (V1), a
major improvement for all characteristics can be identified by
the application of V2, moving all station pairs into the cloud
of observations (except some of the continuity ratio).

The simultaneous rainfall of V3 leads to the best values for
the continuity ratio, comparable to those from observations.
However, slight overestimations can be identified for both
coefficients of correlation. For the probability of occurrence,
high overestimations can be identified (approximately 50 %).
Although the same diurnal cycles are used for all stations, the
probability of occurrence is less than 1 due to the fact that
rainfall does not necessarily occur at all stations on a wet
day.

Additionally, the influence of the spatial consistence on
resulting areal rainfall intensities is investigated. In the Sup-
plement S5, areal rainfall intensities resulting from V1, V2
and V3 are shown for one subcatchment of Pionierbrücke.
Since only one observed high-resolution time series (Reck-
ershausen: two) is available for each catchment, no compar-
ison between areal rainfall intensities between observed and
disaggregated time series (resulting from three stations for
each catchment) can be carried out. Areal rainfall intensities
resulting from disaggregated time series can only be com-
pared among each other. V1 leads to the lowest rainfall in-
tensities, V3 to the highest. Areal rainfall intensities of V2
lie between V1 and V3. The “random” rainfall occurrence in
V1 leads to smaller rainfall intensity values as was indicated
by the probability of occurrence (see Fig. 4). Accordingly,
the parallelization of V3 leads to the highest areal rainfall in-
tensities. Therefore, the results for the spatial bivariate char-
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Figure 5. Annual rainfall extremes of the areal rainfall intensities
for subcatchment 2 in Pionierbrücke. For all 10 realizations used as
input for HBV, the solid line represents the median (based on annual
extreme values from 1 November 1950 to 31 October 2003).

acteristics and the areal rainfall intensities are consistent. The
findings are similar for the other subcatchments in Tetendorf
and Reckershausen.

Additionally, the extreme values of the areal rainfall in-
tensities have been analyzed, since those can have a sig-
nificant influence on the resulting runoff. In Fig. 5, the an-
nual maxima rainfall extremes for another subcatchment in
Pionierbrücke are illustrated using the Weibull plotting po-
sition (similar for all subcatchments). As identified for all
areal rainfall intensities, for the extreme values, V1 also
leads to the lowest values for each return period. V2 and
V3 result in similar values regarding the mean for all re-
turn periods. The clear difference of higher values for V3
over the whole spectrum of non-exceedance probability can-
not be identified for the extreme values (see Fig. S5). How-
ever, for V3, where the diurnal cycle of the station with the
highest daily rainfall amount is transferred to the time se-
ries of all other stations, V3 does not lead to the highest
extreme values. The reason for this is that the highest daily
rainfall amount does not necessarily lead to the highest rain-
fall intensity on the final disaggregation level with an hourly
time step. As an example, a rainfall station A with a daily
total rainfall amount of 50 mm has a maximum intensity dur-
ing this day of 8 mm h−1, whereas station B with a daily
total rainfall of 40 mm has a higher maximum intensity of
15 mm h−1. As such, V3 can also lead to a smoothing of
the rainfall intensities, at least for peak intensities. So for re-
turn periods 1.5 years< T < 20 years, V2 even results in the
highest rainfall extremes. However, for higher return periods
(> 20 years), V3 leads to higher range of extreme values and
higher extreme values itself than V2.

It can be summarized that V1, V2 and V3 lead to differ-
ent results regarding spatial characteristics and areal rainfall
intensities.

4.2 Rainfall–runoff model results

In this section, all rainfall–runoff simulation results are
presented. The section is organized as follows: in (a) the
rainfall–runoff model results using HBV are shown for all
catchments for V1, V2 and V3 with three rain gauges as input
for each. In (b) HBV model results for different station den-
sities for the Reckershausen catchment are presented. HBV
model results without parameter calibration are shown for
all catchments in (c), while WaSiM model results are pre-
sented in (d) for the Pionierbrücke catchment. As mentioned
before, the focus of this study is on seasonal extreme values
of runoff, Extr-Su and Extr-Wi. The cumulative runoff statis-
tics Q-mon and FDC are additionally applied to train and
validate the hydrological model not only for extreme events,
which might have led to implausible parameter sets, not rep-
resenting the general behavior of the catchment.

(a) HBV simulation results with calibration using three
rain gauges as input

The parameterization was carried out by a split sampling
technique with a calibration and validation period for each
catchment. The results for Reckershausen, Pionierbrücke and
Tetendorf are shown in Figs. 6, 8 and 9 for the calibration pe-
riod. For Reckershausen, only results using three rain gauges
as input are shown here. For Extr-Su and Extr-Wi, flood
quantiles are shown for a return period of 100 years. How-
ever, the extrapolation is limited by the length of the sim-
ulated runoff time series. As per Maniak (2005), a maxi-
mum return period of 3 times the runoff time series length
should be used to avoid statistical uncertainties that are too
high, caused by extrapolation. This results in 75 years for
Pionierbrücke, 21 years for Tetendorf and 45 years for Reck-
ershausen. The discussion of the results is limited to these
and more frequent return periods. For a quantitative analysis,
NSE values for all criteria and for each catchment are given
in Table 6. As mentioned before, NSE values are based on
a few supporting points (see Eq. 5). Also, theoretical Gum-
bel distribution functions with two parameters are compared,
which can be similar although the population of each distri-
bution function used is different. Hence, values of 0.99 or
even 1.00 can be achieved. On the other hand, small devia-
tions from the observations can lead to even negative NSE
values (see, e.g., the discussion of the simulation results for
Reckershausen).

For Reckershausen, the Extr-Su and Extr-Wi are similar
to those from observations (Fig. 6). While for summer all
observed flood quantiles are within the range of Extr-Su
(0.99≤ NSE≤ 1.00), for Extr-Wi a slight overestimation oc-
curs for V2 and V3.

www.hydrol-earth-syst-sci.net/22/5259/2018/ Hydrol. Earth Syst. Sci., 22, 5259–5280, 2018



5268 H. Müller-Thomy et al.: Rainfall disaggregation for hydrological modeling

 V1 
Reckershausen − calibration 

 V2  V3 

Su
m

m
er

 e
xt

re
m

es
 

 fo
r T

  [
yr

]
   

   
   

   
   

   
   

   
 k

1 2 5 10 20 50 100

0
20

40
60

80

1 2 5 10 20 50 100

0
20

40
60

80

1 2 5 10 20 50 100

0
20

40
60

80

W
in

te
r e

xt
re

m
es

 
 fo

r T
  [

yr
]

   
   

   
   

   
   

   
   

 k

1 2 5 10 20 50 100

20
40

60
80

1 2 5 10 20 50 100

20
40

60
80

1 2 5 10 20 50 100

20
40

60
80

M
on

th
ly

 d
is

ch
ar

ge
 

1 2 3 4 5 6 7 8 9 10 11 12

0
1

2
3

4

1 2 3 4 5 6 7 8 9 10 11 12

0
1

2
3

4

1 2 3 4 5 6 7 8 9 10 11 12

0
1

2
3

4

 R
el

at
iv

e 
FD

C
 

 [m
³ s

   
]

0 20 40 60 80 100

0.
1

0.
5

5.
0

50
.0

0 20 40 60 80 100

0.
1

0.
5

5.
0

50
.0 Observations

Variant x − median
Variant x − range

0 20 40 60 80 100

0.
1

0.
5

5.
0

50
.0

-1
 [m

³ s
   

]
-1

 [m
³ s

   
]

-1
 [m

³ s
   

]
-1

Figure 6. Runoff simulation results with HBV for Reckershausen, calibration period.
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Figure 7. Runoff simulation results with HBV for Reckershausen, validation period.

For the validation period, flood quantiles for both Extr-Su
and Extr-Wi are overestimated. The overestimation is higher
in winter (approx. 20 m3 s−1 for HQ50) than in summer (ap-
prox. 10 m3 s−1). One possible cause can be the higher yearly
maximums in the calibration period. It is assumed that pa-

rameters, calibrated to achieve high floods, tend to gener-
ate larger discharges even if lower yearly maxima are ob-
served. This is also indicated by the results for FDC and
Q-mon. Although both are represented well in the cali-
bration period (0.88≤ NSEFDC ≤ 0.90, 0.96≤ NSEQ-mon ≤
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Figure 8. Runoff simulation results with HBV for Pionierbrücke, calibration period.

Table 6. NSE values for all catchments and all criteria for calibra-
tion (Cal) and validation (Val) periods.

Catchment Criteria V1 V2 V3

Cal Val Cal Val Cal Val

Extr-Su 0.99 0.60 1.00 −0.05 0.99 0.31
Reckers- Extr-Wi 0.97 0.43 0.97 0.58 0.97 0.58
hausen FDC 0.88 0.57 0.90 0.63 0.90 0.61

Q-mon 0.96 0.81 0.99 0.89 0.98 0.85

Extr-Su 0.89 0.95 0.88 0.91 0.89 0.94
Pionier- Extr-Wi 0.91 0.88 0.91 0.86 0.89 0.83
brücke FDC 0.61 0.17 0.61 0.16 0.61 0.17

Q-mon 0.99 1.00 0.99 1.00 0.99 0.99

Extr-Su 0.32 −0.79 0.68 0.78 0.21 −0.61
Teten- Extr-Wi 0.87 0.70 0.64 −4.36 0.47 0.88
dorf FDC 0.79 0.82 0.84 0.65 0.71 0.78

Q-mon 0.86 0.93 0.78 0.92 0.83 0.92

0.99), both criteria are overestimated in the validation pe-
riod (0.57≤ NSEFDC ≤ 0.63, 0.81≤ NSEQ-mon ≤ 0.89). In
the validation period the range, and hence the uncertainty,
for both Extr-Su and Extr-Wi, is smaller for V2 and V3 in
comparison to V1.

The simulation results of Extr-Su of the validation period
for the Reckershausen catchment show the sensitivity of the
NSE as a goodness-of-fit criterion. V1 and V3 lead to posi-
tive NSE values (0.60 and 0.31), while V2 leads to a nega-
tive value of NSE=−0.05. However, from a visual inspec-
tion (see Fig. 7), differences between all three approaches
are small and less intense as one might expect from the NSE

value itself. The high sensitivity of the NSE makes a direct
interpretation of its values more difficult (Schaefli and Gupta,
2007; Criss and Winston, 2008). However, for the calibra-
tion process, a high sensitivity leads to an improvement of
the simulation results.

Values for the objective function are given in Table 7. For
Reckershausen, the objective function values are very similar
for V1, V2 and V3 for both calibration and validation peri-
ods, especially by taking into account that the value for the
objective function depends on four NSE values.

For Pionierbrücke it should be mentioned that at points
during the calibration (see the FDC in Fig. 8) and valida-
tion periods, a simulated discharge of Q= 0 m3 s−1 was ob-
tained. Zero discharge implies that all storages have been
emptied. This only occurs for Pionierbrücke and is due to
the very steep conditions in the mountainous catchment (see
Fig. 1) and hence the low soil depth and storage capac-
ity. In the observed time series the minimum value is Q=
0.1 m3 s−1. The underestimation is caused by the selection
of criteria selected for the objective function used for cal-
ibration as well. The main aim is to represent the extreme
flows, while the shapes of the intra-annual cycle of monthly
average discharges and of the FDC are only implemented to
achieve an overall realistic mean discharge behavior. For the
FDC, four quantiles greater than 0.5 and only two quantiles
smaller than 0.5 are used. Smaller quantiles are not of inter-
est in these simulations, since discharge values in that range
belong to dry periods with low flows, for which daily values
of rainfall are sufficient for simulations and hence no rainfall
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Figure 9. Runoff simulation results with HBV for Tetendorf, calibration period.

disaggregation would be necessary. For the FDC, V3 leads to
a slightly better fit to observations for non-exceedance prob-
abilities smaller than 35 %, but to a worse fit between 35 %
and 60 % non-exceedance probability. However, FDC is un-
derestimated, independent of the applied rainfall product, for
non-exceedance probabilities higher than 60 %. The under-
estimation identified by the FDC can also be identified for
Q-mon in winter and in the underestimation of the Extr-Su
and Extr-Wi. The results for the validation period are very
similar and not shown here.

In contrast, for Tetendorf, FDC and Q-mon (except
September and October) are overestimated by all rainfall
products (Fig. 9). However, for Q-mon the shape of the intra-
annual cycle is represented well. For the extreme values it
should be mentioned again that the analyses are only valid
for return periods more frequent than 21 years. For Extr-Su,
underestimations occur for return periods more frequent than
5 years for all variants in the calibration period (less than
2 years in the validation period). For Extr-Wi, the median
of V1 represents the observed values well, while for V2 and
V3 the median leads to overestimations for return periods
frequent than 5 years. However, observations are still in the
range of the simulation results, whereby the range is wider
for V1 and V3 in comparison to V2. In total, the resampling
in V2 leads to a reduction of the overestimation of the ob-
served summer extreme values, but to a stronger overestima-
tion for winter extremes in comparison to V1 and V3.

Since for Tetendorf seasonal differences regarding V2
were identified, the spatial rainfall characteristics of the ob-

jective function applied for the resampling process have been
re-analyzed, differing between the summer and winter half
years. The results regarding both periods as well as the es-
timation over the complete year are shown in Fig. 10 for all
bivariate spatial rainfall characteristics based on all 24 hourly
stations in Lower Saxony that have been used before for the
estimation of these characteristics (Müller, 2016). For the
continuity ratio, probability of occurrence and both volume
classes of correlation coefficients, differences can be iden-
tified, based on the different geneses of rainfall in summer
and winter. The probability of rainfall occurrence is lower in
summer due to a higher number of convective rainfall events.
However, the distance-dependent curve progression is very
similar between the seasonal and annual estimated spatial
characteristics. Since spatial characteristics are just moved
closer to the regression line by V2 (without a perfect fit; see
Fig. 4), an improvement of the spatial rainfall characteristics
by introducing slightly different season-dependent regression
lines cannot be expected and is hence not applied.

As main reasons for the seasonal differences, the short val-
idation and calibration periods are considered. Short periods
mean a small number of days with rain and hence a small
number of relative diurnal cycles to swap during the resam-
pling, limiting the ability of the algorithm to improve the spa-
tial characteristics. The usage of time series of V2 as input for
HBV and the additional short time for the calibration process
lead to the seasonal differences.

For longer calibration and validation periods (Recker-
shausen and Pionierbrücke) the results for V1, V2 and V3
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Figure 10. Bivariate spatial characteristics estimated for summer (S) and winter (W) seasons as well as over the whole year (Y).

Table 7. Ostat values for all catchments and all criteria for calibra-
tion (Cal) and validation (Val) periods.

Catchment V1 V2 V3

Cal Val Cal Val Cal Val

Reckershausen 0.04 0.39 0.03 0.48 0.03 0.40
Pionierbrücke 0.13 0.21 0.13 0.23 0.14 0.23
Tetendorf 0.29 0.58 0.27 1.49 0.44 0.50

are very similar regarding the runoff statistics. An influence
of the chosen method on the implementation of spatial con-
sistence cannot be recognized.

(b) HBV simulation results’ calibration using different
numbers of rain gauges as input

A possible reason for the non-visible influence of the chosen
method for the implementation of spatial consistence in the
simulated runoff statistics is the low rain gauge network den-
sity. With a low network density, it is not possible to reflect
the spatial rainfall variability, and hence the influence of V1,
V2 and V3 cannot be identified. The influence of the spatial
rainfall variability on the runoff can only be determined by
rainfall–runoff simulations.

Therefore, for Reckershausen, different numbers of rain
gauges are applied for the calculation of the areal rainfall
used as input for HBV. Areal rainfall is estimated by three
rain gauges (representing a network density of 0.9 gauges per
100 km2) as carried out in (a), five rain gauges (1.6 gauges
per 100 km2) and eight rain gauges (2.5 gauges per 100 km2).

The results are shown for V2 in Fig. 11 for the calibration
and in Fig. 13 for the validation period. The results for V1
and V3 are very similar and not shown here. However, for a
quantitative analysis the NSE and Ostat values are shown in
Tables 8 and 9.

Again, independent of the number of rain gauges used for
the estimation of the areal rainfall, the results from the cali-
bration period (Fig. 11) represent the observations better than
those from the validation period (Fig. 12). In the validation
period, Extr-Su and Extr-Wi are overestimated as well as the
majority of Q-mon and the FDC. Minor differences can be
identified between the different rain gauge network densities,
but no general conclusion is possible; e.g., the overestimation
of Extr-Wi in the calibration period is increasing with an in-
creasing network density. However, in the validation period,
the overestimation is decreasing with an increasing number
of rain gauges from three to eight. Also for Q-mon or the
FDC, no systematic improvement can be identified. This is an
unexpected finding because with the additional information
from the daily total rainfall amounts, an improvement of at
least the continuum characteristics was expected. Also for the
NSE and Ostat values, no systematical improvement can be
identified: Ostat(V2, three rain gauges)= 0.03, Ostat(V2, five
rain gauges)= 0.04 and Ostat(V2, eight rain gauges)= 0.03
(see Tables 8 and 9).

It can be summarized that the number of rain gauges has
only a minor but no systematic influence on runoff statistics
for the catchments used in this study. This contradicts conclu-
sions from other studies. Seliga et al. (1992) recommend in-
formation every 5 km2 (20 rain gauges per 100 km2) for spa-
tial rainfall applications. So an improvement by an increas-
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Figure 11. Runoff simulation results for V2 with three, five and eight rain gauges with HBV for Reckershausen, calibration period.
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Figure 12. Runoff simulation results for V2 with three, five and eight rain gauges with HBV for Reckershausen, validation period.

ing station density up to this threshold should have been ex-
pected. For a French catchment with an area size of 71 km2,
Obled et al. (1994) investigated the influence of using 5 or
21 rain gauges, representing rain gauge network densities

of 7 and 22 rain gauges per 100 km2. With 21 rain gauges
Obled et al. (1994) improved their results significantly. Nev-
ertheless, they conclude that the improvement is based on the
better estimation of the total rainfall amount, not on its spa-
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Table 8. NSE values for all catchments and all criteria for calibra-
tion (Cal) and validation (Val) periods.

Number Criteria V1 V2 V3
of rain
gauges

Cal Val Cal Val Cal Val

3

Extr-Su 0.99 0.6 1.00 −0.05 0.99 0.31
Extr-Wi 0.97 0.43 0.97 0.58 0.97 0.58
FDC 0.88 0.57 0.90 0.63 0.9 0.61
Q-mon 0.96 0.81 0.99 0.89 0.98 0.85

5

Extr-Su 0.98 −0.24 0.98 0.09 0.99 −0.23
Extr-Wi 0.97 0.68 0.96 0.48 0.98 0.65
FDC 0.86 0.53 0.87 0.53 0.86 0.55
Q-mon 0.99 0.91 0.98 0.86 0.99 0.91

8

Extr-Su 0.99 0.75 0.99 0.46 1.00 0.54
Extr-Wi 0.96 0.62 0.98 0.64 0.97 0.59
FDC 0.91 0.57 0.89 0.54 0.89 0.60
Q-mon 0.99 0.88 0.99 0.94 0.98 0.88

Table 9. Ostat values for all catchments and all criteria for calibra-
tion (Cal) and validation (Val) periods.

Number of V1 V2 V3
rain gauges

Cal Val Cal Val Cal Val

3 0.04 0.39 0.03 0.48 0.03 0.40
5 0.05 0.51 0.04 0.49 0.04 0.51
8 0.04 0.28 0.03 0.34 0.04 0.33

tial distribution. Xu et al. (2013) investigated the influence of
station density on a Chinese catchment with an area size of
94 660 km2 and daily rainfall time series; hence a direct com-
parison of network densities is not possible. Nevertheless,
they point out that the distribution of rain gauges inside the
catchment is of importance. A distribution covering regions
with different rainfall behaviors in a catchment can lead to
better simulation results with only a few rain gauges in com-
parison to a less efficiently distributed network with more
rain gauges. In the current study, the rain gauges for each net-
work density scenario have been selected in a way that cov-
ers the catchment area and its rainfall representatively (see
Fig. 2). This could be one reason why an increase in rain
gauge network density shows no systematic improvement in
this study.

(c1) HBV simulation results without calibration using
three rain gauges as input

Another possible reason for the small differences between
V1, V2 and V3 is the calibration of the rainfall–runoff model
parameters for each of the rainfall products. Parameters are
allowed to vary between V1, V2 and V3, and hence damp
the effects of the different degrees of spatial consistence. To
exclude the calibration as a possible reason for the damping

behavior, a calibration with a neutral rainfall product offer-
ing the same spatial rainfall coverage without giving pref-
erence to one of the investigated versions would be recom-
mended. This would enable a direct comparison between
V1, V2 and V3 without re-calibration of the models. Since
high-resolution time series do not exist with the required spa-
tial network density, radar data could be a possible solution.
However, radar time series are too short for model simula-
tions and subsequent derived flood frequency analyses.

To avoid recalibrations, a pragmatic solution is chosen:
for each parameter, the arithmetic mean of the upper and
lower bound for each parameter (as described by Wallner
et al. (2013); see also Table S2) is utilized to form what is
called a “default” parameter set. The default parameter set
is independent of calibration and therefore observed rain-
fall data, which in turn might have stronger similarities to
a certain rainfall product, and hence might introduce biases
in the comparison of rainfall products. In this way, we do
not attempt to provide highest accuracy through utilizing the
default parameter set. Instead, we intend to provide reliable
first guesses that do not favor V1, V2 or V3. The applica-
tion of a default parameter set includes some shortcomings,
e.g., regarding the physical interpretability, but it enables a
comparison of the rainfall products.

For the validation period, simulation results based on this
default parameter set have been analyzed. Although a split-
ting in calibration and validation period is not necessary if no
calibration is carried out, comparisons are possible between
the simulation results with and without calibrated parame-
ters. The results are shown in Fig. 13 for Reckershausen; re-
sults are similar for Pionerbrücke and Tetendorf. For a quan-
titative evaluation, NSE values for all catchments are pro-
vided in Table S6 and Ostat values in Table S7.

For Pionierbrücke and Tetendorf simulation results
are worse without calibration (e.g., for Pionierbrücke,
V1: Ostat, not calibrated = 1.14 and Ostat, calibrated = 0.21). For
Reckershausen a slight improvement can be identified with-
out calibration. In the validation period, the calibrated param-
eters led to an overestimation of extreme values for both sea-
sons as well as an overestimation of FDC and Q-mon (e.g.,
for V3: Ostat, not calibrated = 0.28 and Ostat, calibrated = 0.40).
For all catchments, Extr-Su is underestimated by every ver-
sion of spatial consistence. Extr-Wi is also underestimated
for Reckershausen and Pionierbrücke, but overestimated for
Tetendorf. For all catchments, an intra-annual cycle of Q-
mon can be identified. For Reckershausen, Q-mon is simi-
lar to observations, while for Pionierbrücke underestimations
can be identified and for Tetendorf overestimations can be
identified in winter. The FDC is not represented well for any
of the catchments. However, the results based on the default
parameter sets provide feasible estimates of the hydrological
response of the catchments without calibration. In this way,
the default parameter set provides a possible way to com-
pare different rainfall products without favoring one of them.
As the model parameters are not representing the real behav-
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Figure 13. Runoff simulation results with HBV without calibration for Reckershausen, validation period.
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Figure 14. Runoff simulation results with WaSiM without calibration for Pionierbrücke, calibration period.

ior of the catchments, this procedure is a pure relative com-
parison between the rainfall products (V1, V2, V3) and not
valid for a comparison between the simulation results and
observed data.

Although a default set of parameters has been applied,
the differences in the simulation results between V1, V2
and V3 are still small. For Pionierbrücke, the values of
the objective function show the same range without and
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Table 10. NSE and Ostat values for Pionierbrücke without parame-
ter calibration using WaSiM.

Criteria V1 V2 V3

Cal Val Cal Val Cal Val

Extr-Su 0.95 0.96 0.97 0.95 0.96 0.95
Extr-Wi 0.90 0.77 0.98 0.21 0.99 0.26
FDC 0.86 −0.15 0.87 −0.20 0.88 −0.27
Q-mon 0.99 0.99 0.99 0.99 1.00 0.99

Ostat 0.07 0.30 0.04 0.45 0.04 0.46

with calibration (1.10 (V2)≤Ostat, not calibrated =≤ 1.14 (V1)
or 0.21 (V1)≤Ostat, calibrated ≤ 0.23 (V2, V3)). The similar-
ity of the simulation results exists even if the model parame-
ters are not calibrated and a default parameter set is used.

(c2) WaSiM simulation results without calibration using
three rain gauges as input

For the comparison of V1, V2 and V3, WaSiM (Schulla,
1997, 2015) is used as an additional rainfall–runoff model.
The application of more than one model increases the reli-
ability of the simulation results and excludes the possibility
of being model-dependent. As far as possible, the same pa-
rameter values as in HBV in the uncalibrated case (c1) have
been applied. The investigation with WaSiM is carried out
only for the Pionierbrücke catchment, since here the highest
differences in simulation results are expected due to the short
reaction time of the catchment.

The results are shown in Fig. 14 for the calibration pe-
riod and Fig. 15 for the validation period, and a quantitative
analysis is given in Table 10. For the calibration and the val-
idation period, Extr-Su and Extr-Wi are simulated slightly
higher with V2 and V3 in comparison to V1. In addition, the
range for both criteria is higher for V2 and V3 in compari-
son to V1, whereby V2 leads to even wider ranges than V3
in some cases (e.g., Extr-Win the validation period). This is
consistent with the areal rainfall extremes presented for Pio-
nierbrücke in Fig. 5. In this context it should be repeated that
a relative comparison is carried out and under- or overesti-
mations are not points of interest. The NSE values for both
Extr-Su and Extr-Wi are very similar for V2 and V3 (e.g.,
NSEExtr-Wi,Cal,V2 = 0.98 and NSEExtr-Wi,Cal,V3 = 0.99), but
show differences to V1 (NSEExtr-Wi,Cal,V1 = 0.90). Hence,
in WaSiM a slight effect of the spatial consistence of rain-
fall is visible from the simulation results. Possible reasons
for the differences are the spatial resolution (150m× 150m
for each raster cell). However, for FDC andQmon, values for
V1, V2 and V3 are again very similar. While for the calibra-
tion period the Ostat values are similar for all rainfall prod-
ucts, in the validation period the Ostat values for V2 and V3
(Ostat,Val,V2 = 0.45 andOstat,Val,V3 = 0.46) are much closer
to each other than to V1 (Ostat,Val,V1 = 0.30).

5 Discussion of rainfall–runoff simulation results

The rainfall–runoff simulation results with HBV after cal-
ibration of the parameters show that with all three rainfall
products, V1, V2 and V3, the Extr-Su and Extr-Wi, the FDC
and Q-mon can be represented with a comparable quality.
Although the focus is on the representation of the seasonal
extreme values of runoff, Extr-Su and Extr-Wi, cumulative
runoff statistics (Q-mon, FDC) are additionally applied to
also capture the general behavior of the catchments. The dif-
ferences between the three methods are very small for the
majority of all cases. Possible reasons for these small differ-
ences, which are discussed below, are as follows:

- small differences between the three rainfall products,

- dampening of those differences by the calibration of the
rainfall–runoff model parameters,

- dampening behavior of the catchments,

- choice of the rainfall–runoff model and its ability to rep-
resent differences of the three rainfall products.

Small differences between V1, V2 and V3 would lead to
small differences in rainfall–runoff simulation results. How-
ever, the differences between the three methods are apparent.
For the bivariate spatial characteristics (Fig. 4), the areal rain-
fall intensities (see Fig. S5) and the areal rainfall extremes
(Fig. 5), differences can be identified among all three meth-
ods, which should be reflected by the runoff statistics results
as well.

Another cause can be the separate calibration of the
rainfall–runoff model parameters for each method. The cal-
ibration strategy applied has the capability to harmonize the
different rainfall products with the runoff statistics used for
calibration. For the discussion of this harmonization effect,
the simulation results for Reckershausen during the calibra-
tion (Fig. 11) and validation periods (Fig. 12) are used. Dur-
ing the calibration period, higher values for Extr-Su and Extr-
Wi can be found in the observed runoff data. Hence, the pa-
rameters calibrated in this period tend to lead to higher runoff
values. This is proven by the simulation results of the vali-
dation period with an overestimation of all runoff statistics.
Only through the usage of an uncalibrated parameter set can
the calibration be excluded from the list of possible causes.

The dampening behavior of the investigated catchments
depends on the size and the concentration time of a catch-
ment (Andrés-Doménech et al., 2015). Also, catchments act
as a filter, so rainfall as an input signal is dampened during its
transformation to runoff by several processes (e.g., intercep-
tion, losses due to storage filling, transport processes). Man-
dapaka et al. (2009) have analyzed the runoff response from
different rainfall scenarios with a total amount of 10 mm for
(sub)catchments of different sizes. For catchments with an
area less than 10 km2, a strong dependence of the duration,
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Figure 15. Runoff simulation results with WaSiM without calibration for Pionierbrücke, validation period.

the intensity and the spatial distribution of the rainfall is iden-
tified. With increasing area size, the influence of these fac-
tors is reduced, and for catchments with 1000 km2, it is al-
most completely dampened. Since the catchment areas in the
current study range between 44 and 321 km2, i.e., consid-
erably larger than 10 km2, this could be a possible reason
why the differences in the runoff results are so small. On the
other hand, the results of Seliga et al. (1992) and Obled et
al. (1994) show that an increasing station network density
leads to an improvement of rainfall information and hence
should also lead to an improvement of the runoff simulation
results. Ogden and Julien (1993) investigate the time of con-
centration of a catchment as an influencing factor in rainfall–
runoff processes. If the duration of a rainfall event causing
flooding is shorter than the time of concentration, the spatial
distribution of the rainfall is influencing the discharge at the
catchment outlet. If rainfall events last longer than the con-
centration time, the influence decreases. However, Nicotina
et al. (2008) only identify an influence of spatial rainfall pat-
terns for catchments with areas> 1000 km2, based on the
travel time in the catchment. In the investigated catchments,
the concentration time ranges from 1.8 to 7.4 h, so the tem-
poral and spatial variation should have an influence on the
simulated discharges. In Müller and Haberlandt (2018) the
rainfall products V1 and V2 and their influence on simulated
discharge have been analyzed for 5 min time steps in an urban
hydrological context. Significant differences could be identi-
fied between the simulated runoff statistics resulting from V1
and V2 for their artificial sewage system.

Another reason could be the choice of the rainfall–runoff
model. Obled et al. (1994) raise the question whether it
is possible with semi-distributed models to transfer the in-
formation of the spatial rainfall patterns into the simulated
discharge time series. Obversely, if spatial rainfall patterns
are necessary for rainfall–runoff simulations for a catchment
with an area size of 71 km2, as is used in their study, the spa-
tial resolution of semi-distributed models may not be suffi-
cient. Krajewski et al. (1991) also conclude that for the analy-
sis of spatial problems, fully distributed models may be more
suitable and recommend those for further studies. Bárdossy
and Das (2008) point out that with an increasing spatial res-
olution of the applied rainfall–runoff model, the sensitivity
of, for example, the rain gauge density, and hence the spatial
rainfall patterns, may increase as well. The rainfall–runoff
simulations were carried out with two models, the semi-
distributed HBV model and the fully distributed WaSiM
model. The spatial resolution is much higher in WaSiM with
150m× 150m for each raster cell than in HBV with approx.
20 km2 per subcatchment. This higher spatial rainfall diver-
sity and hence a numerical diffusion of the rainfall due to too
coarse spatial resolution is thus avoided. Through the rain-
fall correction for altitude, an additional increase of the spa-
tial diversity is achieved. While for the simulated discharge
time series with HBV, almost no differences between the
different rainfall products could be identified, for the Pio-
nierbrücke catchment in WaSiM, slight differences between
method V1 and methods V2 and V3 regarding the seasonal
extreme values can be identified. For both V2 and V3, subse-
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quent steps after the rainfall disaggregation were applied to
implement spatial consistence by simultaneous rainfall oc-
currence at different rain gauges. This affects the simulated
runoff at least for instantaneous peak flows in the summer
and winter period. However, the number of subcatchments
in HBV and therefore the spatial resolution of the rainfall–
runoff model can be increased, which is assumed to lead to
more diverse results between V1, V2 and V3, similar to re-
sults from WaSiM.

For Pionierbrücke, as a fast-reacting, mountainous catch-
ment, the absolute differences for the seasonal extreme flows
resulting from V1 or the products V2 and V3 for a flood
with a return period of 50 years are approx. 5–8 m3 s−1 dur-
ing both the calibration and validation periods (see Figs. 14
and 15) using WaSiM. For the other two catchments, Reck-
ershausen and Tetendorf, the difference is expected to be
smaller since both catchments are larger and cover an area
that is less steep. Thus, no additional simulations with
WaSiM have been carried out for these two catchments. In
this context it should be mentioned that WaSiM is a much
more complex rainfall–runoff model than HBV with a high
demand on meteorological input time series (e.g., precipi-
tation, temperature, humidity, wind speed and global radia-
tion), which have to be available for the whole simulation
period on an hourly time step.

6 Summary

The aim of this study is to explore the influence of differ-
ent degrees of spatial consistence in disaggregated time se-
ries on simulated runoff statistics. The study is carried out
for three mesoscale catchments in Lower Saxony, Germany,
which differ in terms of their size, land use, soil and slope.
For the disaggregation, a multiplicative, microcanonical cas-
cade model according to Müller and Haberlandt (2015) is
used. Since the disaggregation process is performed on a
station by station basis without taking neighboring stations
into account, spatial consistence must be implemented after-
wards. Here, a resampling algorithm based on Müller and
Haberlandt (2015) is applied (named V2) as well as a more
pragmatic approach, whereby the same relative diurnal cy-
cle is used for all stations on the one day (Haberlandt and
Radtke, 2014; named V3). Nevertheless, investigations with-
out subsequent steps to implement spatial consistence exist
as well (Ding et al., 2016) and have been included in this
study (named V1). The hypothesis tested in this study is that
these different rainfall products lead to differences in the de-
rived runoff statistics as well. The following conclusions can
be drawn regarding the rainfall product differences:

1. The resampling algorithm for the implementation of
spatial consistence was applied on an hourly basis for
the first time for distances smaller than 20 km for V2.
The achieved values for the bivariate spatial rainfall

characteristics are comparable to those from observa-
tions.

2. The bivariate spatial characteristics are underestimated
by V1 and overestimated by V3 respectively.

3. While for the areal rainfall intensities, the exceedance
curve leads to an expected order of V1<V2<V3, for
the areal rainfall extremes, V2 and V3 result in similar
values, both being higher than V1.

The generated rainfall products V1, V2 and V3 have been
used as input for rainfall–runoff modeling to evaluate the in-
fluence of the differences of rainfall characteristics identified
above. An application-based evaluation is important in terms
of rainfall generation, since it provides a new perspective and
hence new insights into the rainfall data (Müller and Haber-
landt, 2018; Müller et al., 2017; Sikorska et al., 2018). For
the simulations, the semi-distributed HBV model (Wallner et
al., 2013) and the fully distributed WaSiM model (Schulla,
1997, 2015) have been implemented. The essential findings
are as follows:

1. With the applied calibration process in HBV, a good rep-
resentation of observed runoff statistics is possible for
V1–V3 for the calibration period.

2. The rainfall products V1–V3 result in only small dif-
ferences in the simulated runoff statistics using HBV.
Differences do not increase whether a default parameter
set without calibration is applied or if the station density
increases.

3. For peak flows in the summer and winter periods, slight
differences resulting from V1 and both V2 and V3 can
be identified using WaSiM. V2 and V3 lead to compara-
ble higher flood peaks than V1, which is consistent with
extreme value analysis of areal rainfall for this catch-
ment.

4. For the intra-annual cycle and the flow duration curve,
no difference resulting from V1–V3 can be identified
from either HBV or WaSiM.

7 Conclusion and outlook

By the application of V1 as input rainfall data and HBV as
a rainfall–runoff model, Ding et al. (2016) achieved a good
representation of summer and winter peak flows. Haberlandt
and Radtke (2014) applied HEC-HMS (Feldman, 2000) as
a semi-distributed rainfall–runoff model with disaggregated
and parallelized rainfall time series (V3) as input data. The
continuously simulated runoff time series were analyzed re-
garding annual extreme flows, which could be reproduced
well for all catchments. The findings of both investigations
can be confirmed by the current study.
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However, no differences resulting from V1, V2 and V3
regarding the summer and winter extremes are detectable for
HBV.

On the other hand, WaSiM results in slight differences for
seasonal extreme values for Pionierbrücke, the investigated
catchment, which is in line with previous findings regard-
ing the areal rainfall extreme values. However, the differ-
ences between the resulting seasonal peak flows simulated
with WaSiM from V1, V2 and V3 are still small with ap-
prox. 5–8 m3 s−1 (up to 15 %) for floods with return periods
of 50 years. It should be noted that V1, V2 and V3 clearly
differ regarding the investigated spatial bivariate characteris-
tics of probability of occurrence, coefficient of correlation,
continuity ratio and the resulting areal rainfall intensities, es-
pecially regarding their extreme values. Hence, the hypothe-
sis formulated before is rejected in this case study. Although
several possible causes regarding the applied rainfall–runoff
models (parameter calibration, rainfall station density, type
and spatial resolution of rainfall–runoff model) have been
analyzed, no final conclusion about the reason for the similar
runoff statistic can be drawn. It is assumed that the damping
behavior of the catchments leads to these small differences
in runoff statistics.

These findings suggest that (i) simple model structures
might compensate for deficiencies in spatial representative-
ness through parameterization and (ii) highly resolved hy-
drological models benefit from improved spatial modeling of
rainfall.

Of course, the similarity of the simulated runoff statistics
from V1, V2 and V3 is only valid for the investigated catch-
ments. For catchments with other climatic or physiographic
attributes, results can be different. Therefore, a systematic
investigation of catchments with different hydrological be-
havior in climates and with different rainfall–runoff mod-
els would be necessary (comparative hydrology) to identify
catchments for which the degree of spatial rainfall consis-
tence matters. The current study could be a starting point for
this.

However, the main intention of the current study was to
analyze the impact of rainfall products with different degrees
of spatial consistence on simulated runoff statistics. The ap-
plication of the resampling algorithm (V2) is recommended
for the spatial application of disaggregated rainfall data since
this method leads to the best agreement with the observed
spatial rainfall characteristics.
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